Validation

How to validate models?

Luis Moneda, Data Scientist at Nubank

Outline

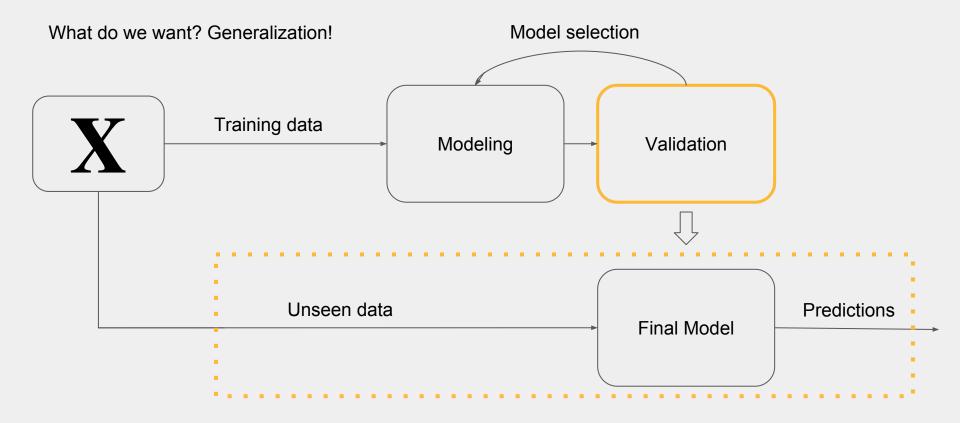
- 1. Supervised Learning summarized
- 2. ML 101 validation
- 3. Real world supervised learning
- 4. Examples, cases...

Supervised Learning summarized

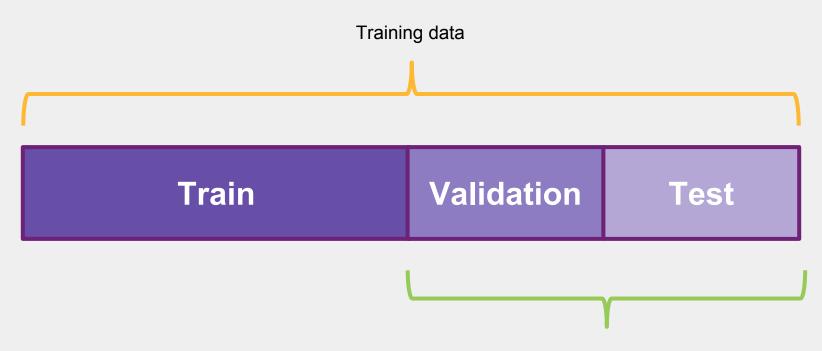
 $X \xrightarrow{f} Y$

- Empirical Risk Minimization
- Statistical Learning
- Independently identically distributed (iid)
- We want to predict things nicely, we don't care about what is the f

ML101 Validation

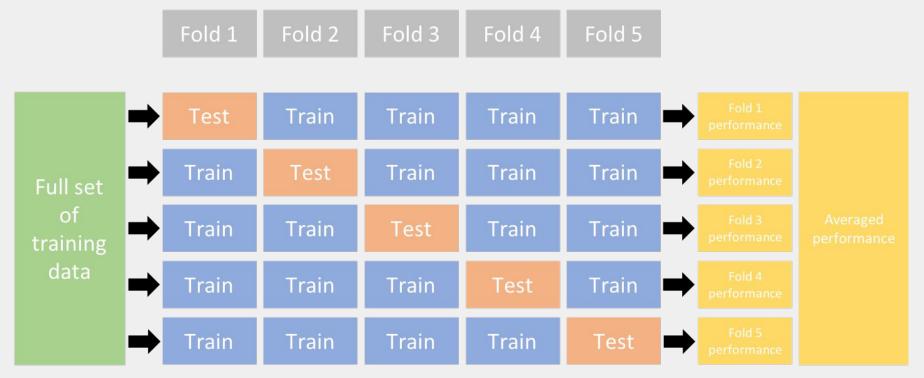


ML101 Validation: Simple split



We pretend it's unseen data

ML101 Validation: K-Fold



Source: UC Business Analytics R Programming Guide

ML101 Validation

So after your ML101 classes it may look very clear:

We want generalization, i.e. performing well on unseen data, so:

- 1) Leave some data out of the training process and pretend it's unseen;
- 2) Check if the learned model performs well on this unseen data;
- 3) If it performs reasonably, pick it!
- 4) Put in production!

What could possibly go wrong?

Then you go to the real world and...

Real World Supervised Learning

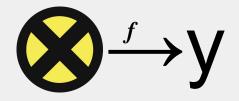
 $X \xrightarrow{f} Y$

Real World Supervised Learning

 $f \rightarrow V$

Well, it turns out that in most of the cases the X is mutant!

Real World Supervised Learning



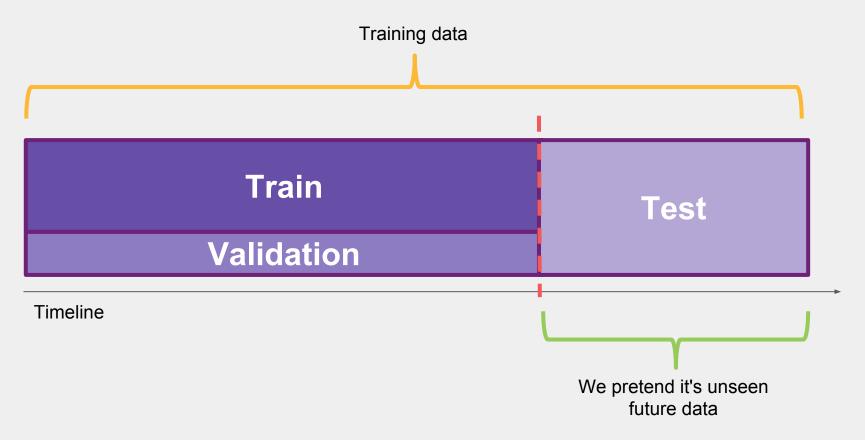
Well, it turns out that in most of the cases the X is mutant!

- Temporally
- Spatially

Also:

- The training data may be just a subset
- It's not perfectly distributed along its features

Real World Validation: Temporal split



Real World Validation



When temporal validation can help us?

Basically, always!

All datasets have a temporal aspect because it is generated as the time passes by, but its effect depend on the problem.

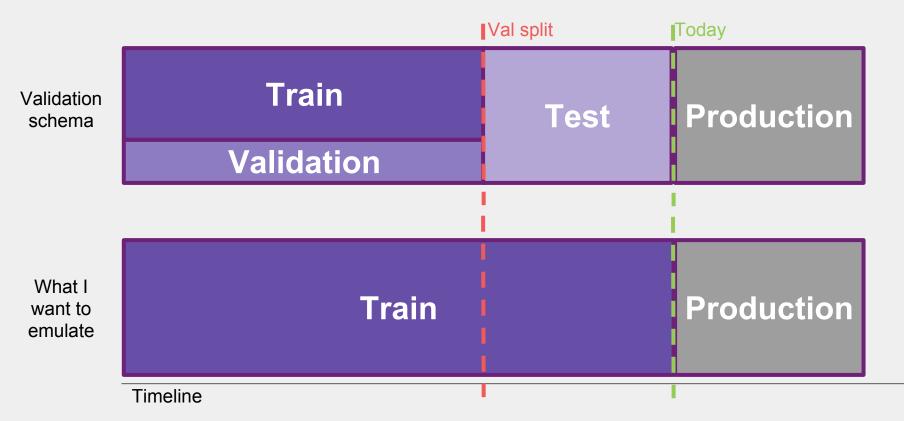
Weak

- Images
- Text

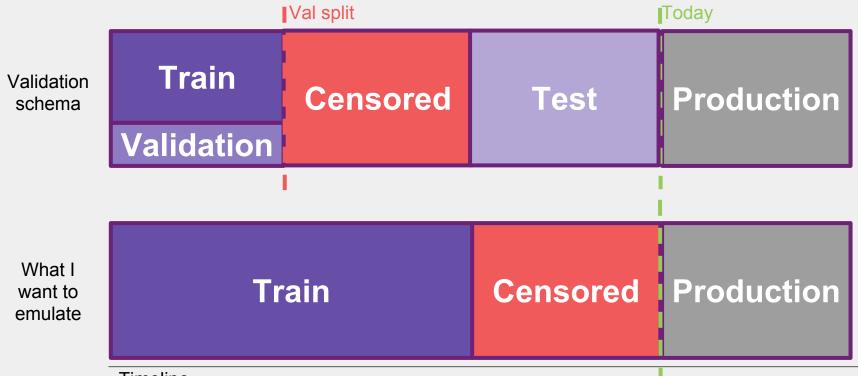
Strong

- Time series
- Tabular data

Real World Problem: target observation



Real World Problem: target observation



Timeline

Prediction gap

When is it relevant?

Testing different target definition: churn as an inactive user for 5, 10... 60 days. It will change the censored length.

So the validation can mimic the production environment and address the trade-off between target stability and less and older training data.

Examples: churn, default

Ready to rock!

Ok, let's recapitulate:

- Now you know the inherent role of time in every dataset
- You can design a validation schema that considers the prediction gap

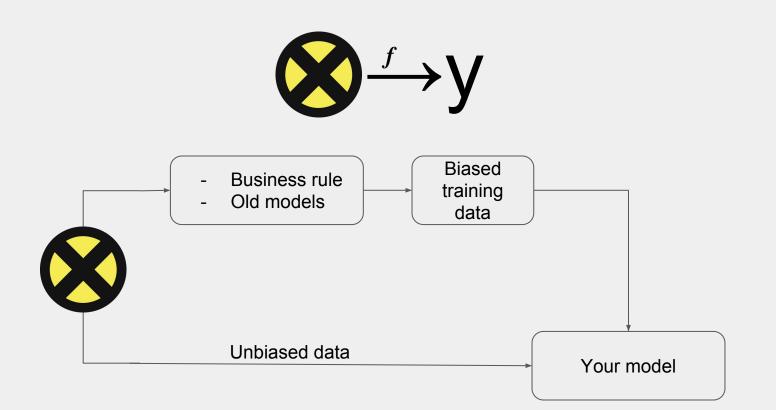
Now you pick a company's problem and ask how they solve it currently.

"We have some rules to decide what to do: we apply some IFs and..."

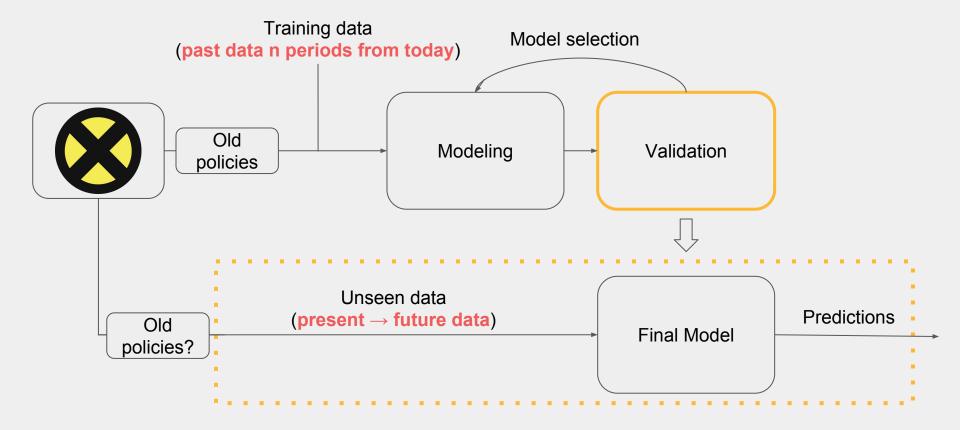
"Oh, do you think you can improve it?"

But your model fails miserably and you don't get what you're missing!

Old policies and models bias



Real World Validation



Engineering and Business

Engineering

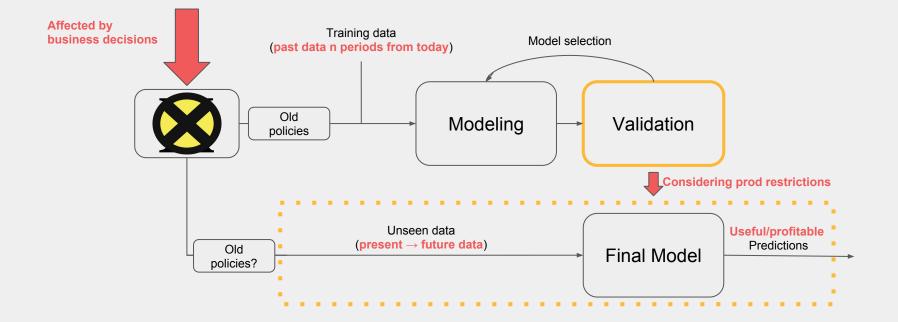
- How often can I update my model?
- Is there any time constraint?

So the production environment we want to validate may become something like "what is the best model considering it can be updated every N periods?"

Business

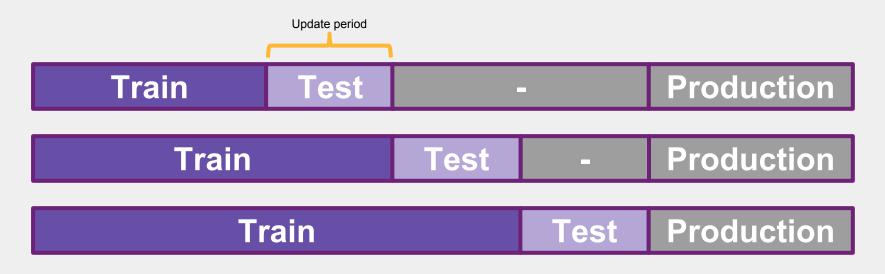
- A lot of things can change the X distribution:
 - Marketing
 - New products
 - Communication
 - Growth/maturity
- You want to produce meaningful/profitable/useful predictions
- Update and time constraints also
- Model objective

Real World Validation



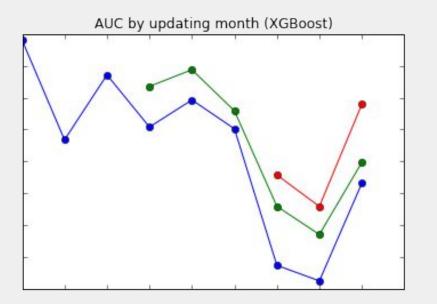
Real World Validation - Engineering

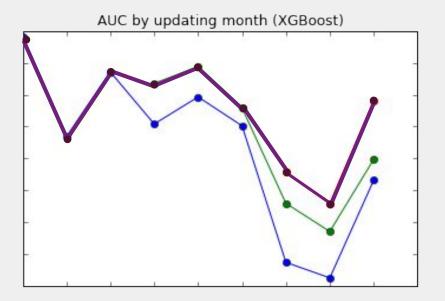
Validate considering update



Timeline

RW Validation - Engineering example





Business

Business

- A lot of things can change the X distribution

You can't do anything at validation time, but **monitor**! You shipped something to score over X, but people won't care about, while you should.

- You want to produce meaningful/profitable/useful predictions Validate considering business value. Split by important features/groups.
- Update and time constraints also:

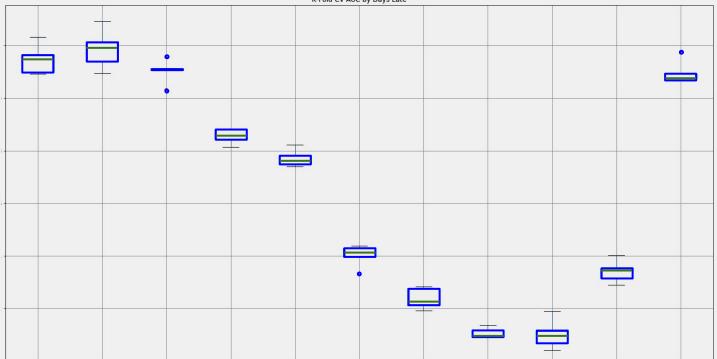
Consider model performance x delay to take decisions! Calculate the monetary trade-off between them.

- Model objective

If you know how your data was collected and how your model is going to be applied, it can be a **leverage** instead of a trap.

Real World Validation - Deeper look

Boxplot grouped by split_evaluator_days_late_bins



K-Fold CV AUC by Days Late

So at the end...

Train: A nice and invariant distribution I have a reasonable random sample.

Apply: In an unseen random sample.

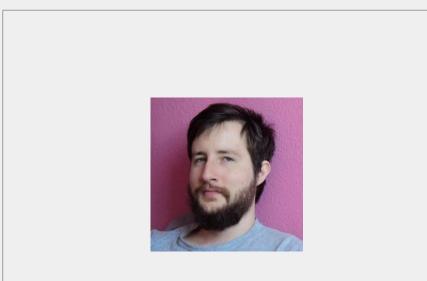
Train: Old, far from prediction time, biased by old policies and models, unequally distributed in the features you care about.

Apply: In an unseen future data I'm not sure about how it's going to change accordingly to time and other business decisions.

Takeaways

It's hard to define a recipe for validation, but keep in mind the general idea of "mimic the application case":

- Use a temporal split
- Observe the model degradation in time
- Consider the **censored period** to observe the target
- Do a internal research about how the data was collected to be aware of all the old policies and its bias
- Know how/when your model is going to be applied
- Consider all the engineering restrictions and possibilities
- Think about the **important business aspects** to do a deeper validation
- Be aware in population shifts caused by business decisions



Questions?

Twitter: @lgmoneda E-mail: <u>lgmoneda@gmail.com</u> Blog: <u>http://lgmoneda.github.io/</u>