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Abstract. As time passes by, the performance of real-world predictive
models degrades due to distributional shifts and learned spurious corre-
lations. Typical countermeasures, such as retraining and online learning,
can be costly and challenging in production, especially when accounting
for business constraints and culture. Causality-based approaches aim to
identify invariant mechanisms from data, thus leading to more robust
predictors at the possible expense of decreasing short-term performance.
However, most such approaches scale poorly to high dimensions or re-
quire extra knowledge such as data segmentation in representative envi-
ronments. In this work, we develop the Time Robust Trees, a new algo-
rithm for inducing decision trees with an inductive bias towards learning
time-invariant rules. The algorithm’s main innovation is to replace the
usual information-gain split criterion (or similar) with a new criterion
that examines the imbalance among classes induced by the split through
time. Experiments with real data show that our approach improves long-
term generalization, thus offering an exciting alternative for classification
problems under distributional shift.

Keywords: Invariance · Generalization · Distributional Shift · Inductive
bias

1 Introduction

Machine learning techniques are mainly evaluated by their ability to generalize,
that is, to find valuable patterns from a training data sample that satisfactory
apply to unseen instances [4]. Typically, that process involves a time dimension:
training data refers to the past, while unseen instances come from the future.
This temporal characteristic is usually dismissed by a time-stationary assump-
tion of the data generating distribution. In practice, sampling distributions are
seldom stationary, which causes spurious correlations to be learned and perfor-
mance to degrade quickly.1 A stereotypical anecdotal example is that of learning
to classify an image of a husky dog as a wolf due to the presence of snow [1]. By
blindly minimizing training error (or empirical risk), machine learning models
1 There is often an inductive bias in learning algorithms towards estimating simpler

accurate models. For complex tasks, it is often the case that spurious correlations
are often simpler than non-spurious ones [32, 1].
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absorb such relationships [1] and fail to generalize, even when a generalization
promise from the validation stage is observed [8, 25].

A quick and dirty solution often employed is regularly retraining predictive
models as new data arrives. However, this is unsatisfying from a business perspec-
tive, as labeling new data is often costly, and recurrently deploying new models
into production can introduce inadvertent behavior and lead to significant harm.
Also, business culture often is conservative towards adding or modifying exist-
ing systems, and such a constant update can decrease trust in machine learning
models.

Spurious correlations can be defined as the non-causal statistical relationships
between the target and non-target (covariate) variables [21, 20]. Thus, the im-
pact of spurious correlations can be alleviated by incorporating causal reasoning
into the learning process. However, performing causal inference in the absence
of interventional data can be detrimental to predictive performance (hence to
generalization) and is generally avoided unless the end task involves causal rea-
soning (such as producing counterfactuals). Recently, researchers have started
advocating the benefits of ensuring some of the properties of causal inference for
purely predictive problems without going through a full causal analysis [11].

One interesting property is invariance: causal relationships are invariant to
change of environments, which are external settings of the covariates [23, 6]. By
enforcing invariance in a learning algorithm, we regularize against spurious cor-
relations and decrease the generalization error [1]. While samples from multiple
environments are available in specific circumstances (e.g., clinical data collected
at different health care centers), this type of data is missing and difficult to
generate for most prediction tasks in the real world. Instead, a different type of
information about the environment is present in the form of the temporal order
in which observations are collected, often spanning a significant time period.

To circumvent the shortcomings highlighted and make use of the often abun-
dant temporal information available in real industry datasets, in this work, we
develop the Time Robust Trees (TRT), a new decision tree-inducing algorithm
with a strong learning bias towards time-invariant predictive models. A TRT
is obtained by modifying the standard recursive partitioning algorithm used to
induce decision trees, replacing typical split criteria such as information gain or
standard deviation with a new criterion that measures impurity across differ-
ent time periods. We thus assume that the data is temporally ordered and the
training set is segmented by, e.g., yearly data. A hyper-parameter defines the
minimum number of examples by segment the model should keep as it learns
new rules. This ensures that predictions on unseen data (which do not need
temporal information) are more robust to spurious correlations in training data
without requiring specific information about environments, causal relationships,
or retraining.

Our experiments with seven real-world datasets show that when domain shift
is significant, as measured by a domain classifier [24], there is a benefit to using
TRTs as a base estimator for an ensemble instead of Decision Trees. The higher
the change between the training period and future data, the higher the benefit
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of signaling to the model via the TRT design that we prefer to learn stable
relationships.

The rest of the paper is organized as follows. We start in Section 2 reviewing
related work in invariance learning, robust learning, and causal analysis. We
then present our proposal in Section 3. We explain the experimental setup and
present the empirical results with real data in Section 4. We conclude the paper
in Section 5 with a discussion about the limitations of the proposed method and
some possible improvements for the future.

2 Related Work

As discussed in the introduction, one way of hedging against spurious correla-
tions is to explicitly consider causal relationships in model building. While there
are many ways that can be achieved in the literature, a common approach is to
resort to the principle of Independent Causal Mechanisms (ICM), which states
that the causal generative process of a phenomenon is composed of autonomous
modules that do not inform or influence each other [26]. In the probabilistic
case, this means that the conditional distribution of each variable given its di-
rect causes (i.e., its causal mechanism) does not inform or influence the other
conditional distributions (mechanisms). Recall that an environment is defined
as an external setting of the covariates and target variables. As such, data from
different environments can be used to identify and learn the causal mechanisms
and avoid learning spurious correlations. The hypothesis is that such causal
mechanisms are time-invariant, hence improving the generalization ability of the
model.

The Invariant Causal Prediction (ICP) [22] is a feature selection algorithm
that finds the subset of causal features by testing if the error in the residual on
this subset follows a property only found on the target variable’s parents under
the needed assumptions. ICP requires some mild conditions to be met and scales
poorly to high-dimensional data.

The Invariant Risk Minimization (IRM) [1] exploits invariance without ex-
plicitly modeling causal relationships. Instead, it modifies the objective function
to iterate in training environments and penalizes the lack of invariance across
environments. A penalization term is derived for the case of linear classifiers (pos-
sibly after the input has been modified by a feature extractor), and the more
general case of nonlinear (e.g., neural net) classifiers is left open. ICP requires
data to be collected from different environments and annotated accordingly.

There are many other approaches designed to take advantage of the ICM
principle. In the Recurrent Independent Mechanisms (RIM) network [10], atten-
tion [30] is used to activate different modules composed by RIMs. These modules
learn different aspects of the problem, and it is expected that the invariant as-
pects will be useful when it needs to predict data that differ from the training
distribution. Neural Causal Models [15] leverage known or unknown interven-
tions in the observational data to learn. The weakly supervised disentanglement
approach [16] learns how to disentangle components from high-dimensional fea-
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ture spaces, like images, using the hypothesis that they are composed of a small
number of relevant factors that can change, thus exploring the modularity of
ICMs. The do-calculus in the presence of interventional data [3] is also used to
tackle the problem of learning from available data from a few environments and
generalizing to unseen environments.

In Robust Supervised-Learning (RSL) [2], the concept of an environment is
explicitly missing, but the learning algorithm assigns weights to the training
data and optimizes a worst-case scenario for such weights, hoping that such a
scenario will also protect the performance at future unseen examples [12]. The
first difference with respect to the model we propose here is that RSL considers
an adversarial optimization problem while our approach considers worst-case
optimization by segmenting the training data.

Our proposed learning algorithm is heavily inspired by the Causal Forest al-
gorithm [31], which induces a decision tree from interventional data segmented
into treatment and control groups. The algorithm enforces invariance by requir-
ing a minimum number of examples from treatment and control groups at each
split to contrast them in the leaves and reveal heterogeneous causal effects. In
contrast, our proposed method assumes purely observational data and regularizes
against spurious correlations and distributional shifts by requiring a minimum
number of examples from every time period in every node of the decision tree.

There are also approaches that exploit temporal information as an environ-
ment proxy like ours in order to mitigate the effects of distributional shifts. The
Temporal Decision Trees [14, 13] use timestamped data to induce a decision tree,
targeting the construction of sequential predictions; as is the case with sequential
prediction, the algorithm assumes time-dependence among examples with a sta-
tionary generating process. Our method instead makes the common assumption
of independent and identically distributed data points.

3 Learning Time Robust Trees

Before formally describing the proposed algorithm, we will first motivate the
necessity of time-robust learning methods and explain the limitations of current
approaches with a toy example.

3.1 Motivational Example

Consider a setting with two finite-valued input variables X1 and X2, a binary
target variable Y , and a time period variable Tperiod, used to segment the data
into different diverse environments. We use three time periods to illustrate, thus
Tperiod = {1, 2, 3}. Suppose we collect the data shown in Figure 1, where the
data segments for t = 1, 2 consist of the available training set, and the data
segment for t = 3 is observed after model deployment. We will call it the holdout
set (note: this is not the typical validation dataset since we assume it is taken
from a different distribution, arising possibly from a different environment and
certainly from a different time period in the future). According to the example,
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Fig. 1: An artificial example of data with spurious correlations. In the time period
1, there is an pure split on X2 that leads to maximum accuracy in that data, but
does much poorer performance for the time periods 2 and 3. The Time Robust
Tree prefers the impure split on X1, which provides more stable performance
across different time periods.

X1 is mildly predictive and stable for Y , while X2 is a perfect predictor at t = 1
but irrelevant for t = 2 and t = 3. Thus, X2 can be considered a spurious
correlation or a non-static causal relation that shifted.

If the modeler uses all the available training data, a typical Decision Tree
(DT) inducing algorithm will combine the data from periods 1 and 2 into a
single training data set to evaluate the possible splits. In contrast, in the Time
Robust Tree (TRT), as long as the modeler sets the period information as the
environment, we consider the split performance separately when looking at every
period. To illustrate it, we prune the example tree to have a single split in both
cases. We use the Gini impurity (GI) minimization process in Table 1.

Table 1: Split evaluation process for the Decision Tree and the Time Robust
Tree for the motivating example

DT TRT
Variable Split value GI GI at t=1 GI at t=2 Max. GI value
X1 3 0.49 0.50 0.40 0.50
X1 4 0.44 0.44 0.44 0.44
X1 5 0.49 0.50 0.40 0.50
X2 1 0.27 0.00 0.50 0.50

We use the Area Under the Curve (AUC) to evaluate the prediction quality.
The measure goes from 0 to 1, and the higher, the better. By learning these
splits, the Decision Tree achieves a 0.83 AUC on training but a poor result
on holdout data of 0.50 AUC. The Time Robust Tree performs significantly
worse in training, achieving an AUC of 0.67; however, it maintains that same



6 L. Moneda, D. Mauá

performance in the holdout dataset, largely outperforming the Decision Tree.
As this example shows, our proposal sacrifices training accuracy in the hopes of
achieving superior performance on unseen data that suffer distributional shifts
due to the presence of spurious correlations.

3.2 Time Robust Forests

We can now formally describe the Time Robust Tree induction algorithm. We
denote an arbitrary impurity function used to evaluate the quality of a dataset
split as L. The algorithm work as follows. Consider a timestamp column Tstamp

representing the data point’s capture time with the exact dimension of the ran-
dom variables vectors (X1, ..., Xd, Y ), where the X variables represent inputs
and Y the variable of interest, that is, the target. The time period Tperiod is
an aggregation of sequential examples when ordered by Tstamp using a human-
centered concept, like hourly, daily, weekly, monthly, yearly, or simply putting
together a fixed number of examples and reducing Tstamp granularity.

Given n time periods Tperiod = t1, t2, . . . , tn in the training set, we find the
best split s∗ to divide the examples in Xnode using the rule Xf ≤ vf where f
is a feature from all available features F at a certain value vf from all possible
values for the feature f in the training set Vf by applying recursively to every
node data Xnode until the constraints are not satisfied, being the first node the
root containing all the training set:

s∗ = min
∀f∈F,∀v∈Vf

max
t∈Tperiod

L(Xnode),

subject to |Xright,t| ≥ ρ and |Xleft,t| ≥ ρ, ∀t ∈ Tperiod .
(1)

The ρ is a scalar representing the minimum number of examples in every time
period to perform a split. The model also accepts the average loss criteria.

s∗ = min
∀f∈F,∀v∈Vf

1

|Tperiod|

Tperiod∑
t=1

L(Xt),

subject to |Xright,t| > ρ and |Xleft,t| > ρ,∀t ∈ Tperiod .

(2)

For the predictions Ŷ , the average from the leaf is taken without any consid-
eration about the time period it belongs, Ŷ = 1

|Y |
∑

yi.
It is worth isolating in the Equation 3 one of the differences from TRT.

This period-wise score considers how the model performs in the different periods
defined by the user to decide the optimal split. The other difference is the hyper-
parameter ρ. It interacts a lot with this part of the process—higher ρ guarantees
a higher sample in each period for their evaluation regarding the split.

1

|Tperiod|

Tperiod∑
t=1

L(Xt) . (3)
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There is nothing particularly different in the step from Time Robust Tree
to Time Robust Forest (TRF) in comparison to the one from a Decision Tree
to a Random Forest [5]. Considering M trees, the final prediction Ŷ becomes
1
M

∑M
m=1 Ŷm, a random proportion of the input features F is considered when

finding the best split for a node on Equation 1, and bootstrapping is performed
in the training data before learning every tree.

3.3 Synthetic example

In order to see how TRT prevents spurious correlations from a causal perspec-
tive, consider the following artificial example. Once again, we include a spurious
feature X2 in the data generating process that makes the prediction non-stable
in the training data. The example is extreme, since X2 mimics Y in t = 1, while
it is random in t = 2, both of them available for training. The X2 keeps random
in the following periods, consisting of the holdout set. It emulates the hypothesis
that unstable properties are less likely to persist.

X1 ∼ N(0, 1)
Y ∼ X1 + N(0, 1)
X2 ∼ f(e)

(4)

where e is the time period variable, which is our environment. In the training, we
have two training environments ϵtrain = {1, 2}. The f(e) defines X2 following:

f(e) =

{
Y , if e = 1

N(0, 1), if e ̸= 1
(5)

We make it a binary classification task by converting y to a positive class
when greater than 0.5 and to the negative one otherwise. The holdout is com-
posed of the following periods, starting at t = 3.

At first, we apply the TRT and the DT using similar hyper-parameters: 30 as
maximum depth, 0.01 as minimum impurity decrease, 10 as a minimum sample
by period for the TRT, and 20 as a minimum sample to split for the DT since
we have two periods. The TRT presents an AUC of 0.83 in train and 0.81 in
the holdout, while the DT performs around 0.92 AUC in training and 0.64 in
the holdout. It shows how the TRT avoids learning from the spurious variable
X2, which lowers its training performance but makes it succeed in the holdout,
while the DT goes in the opposite direction. However, we need to define the
hyper-parameters following a process and objective criteria in a real-world case.
In the following subsection, we show how to execute this step when using the
TRT.

3.4 Hyper-parameter Optimization

When selecting hyper-parameters, a common strategy is to use the K-fold valida-
tion design [29]. However, during the hyper-parameter selection, this design pools
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Fig. 2: A hyper-parameter optimization design that keeps the period-wise evalu-
ation from the TRT algorithm is important to make the model keep its purpose
of learning stable relationships.

the data from the periods and then select the set of parameters in which the per-
formance is the highest. This process does not favor the period-wise design from
TRT. We use a K-fold that generates folds containing just one environment, used
as test folds to overcome it. We identify this approach as Environment K-Folds
(Env K-Folds). Similar to what we use to learn the best split in the TRT. Besides
taking the average performance in the folds to decide the hyper-parameters, we
evaluate a second strategy when using the Env K-Folds. First, we average the
performance in all folds consisting of the same environment and hyper-parameter
set, then we group by only hyper-parameters sets and select the minimum per-
formance, which is the worst environment case. Finally, we take the set with the
highest performance among the worst cases to determine the model using the
best worst case. We identify this approach as Env K-folds Min-Max.

We bootstrap the data and repeat the process ten times to evaluate these
different designs. The results are the average of these ten best models following
each approach. As seen in Figure 2, the TRT performs significantly better than
the DT in the holdout set when using the Env K-folds Min-Max, while in the
other two strategies, they are very similar.

4 Experiments

To validate the approach, seven public datasets in which a timestamp informa-
tion and a reasonable time range are available were selected [18] [17] [19] [9] [27]
[28] [7].

We split every dataset into two time periods: training and holdout. Then
training period data is split randomly between training and test. For both bench-
mark and challenger, we use the Time Robust Forest python package.2 The
benchmark has all training examples with the same Tperiod, which is a special

2 The source code and datasets used and install instructions are available on GitHub
at (omitted due to blind reviewing).
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case the TRF becomes a regular Random Forest. The challenger uses yearly or
year-monthly segments.

In Table 2, it is possible to verify that the cases where TRF is an exciting
challenger are the ones in which the benchmark has problems performing in
the holdout as well as it does in the test. We train a domain classifier using
the holdout as the target to clarify the evidence under scenarios the future
data changes the most. The higher the AUC, the more significant the difference
between test and holdout in that dataset. As seen in Figure 3, the results show
the TRF performed better in the datasets with a more remarkable shift between
training data and holdout data.

Table 2: Performance results. When comparing the AUC in the holdout from the
TRF to the RF, the benchmark gets better performance on three cases. However,
the difference between challenger and benchmark in the holdout always drops
compared to the same difference in the test.

Dataset Data split Volume Time range RF TRF ∆ TRF-RF
Train 98k 2010-2013 .736 .717 -.019

Kickstarter Test 24k 2010-2013 .705 .701 -.004
Holdout 254k 2014-2017 .647 .661 .014
Train 21k 2015-2018 .927 .865 -.062

GE News Test 5k 2015-2018 .879 .839 -.040
Holdout 58k 2019-2021 .805 .821 .017
Train 8k - .939 .869 -.070

20 News Test 2k - .867 .828 -.039
Holdout 8k - .768 .774 .006
Train 75k 2014-2017 .814 .803 -.011

Animal Shelter Test 19k 2014-2017 .792 .790 -.002
Holdout 61k 2018-2021 .791 .791 .000
Train 41k 2017 .799 .695 -.104

Olist Test 10k 2017 .664 .641 -.023
Holdout 62k 2018 .635 .635 .000
Train 100k 2001-2010 .936 .909 -.027

Chicago Crime Test 61k 2001-2010 .904 .899 -.005
Holdout 90k 2011-2017 .905 .902 -.003
Train 90k 2013-2015 .990 .984 -.006

Building Permits Test 22k 2013-2015 .974 .972 -.002
Holdout 193k 2016-2017 .977 .973 -.004
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Fig. 3: Domain classifier performance by the delta improvement in the TRF.
The greater the difference between the source and target data, translated by a
high AUC for the domain classifier, the greater the benefit of learning invariant
relationships to generalize to future unseen data.

5 Discussion and Conclusion

Ultimately, machine learning models are evaluated by their ability to general-
ize observed patterns to unseen data. In realistic scenarios, this often involves
using the model under different conditions than those observed in the train-
ing stage, causing models learned by standard empirical risk minimization to
perform unsatisfactorily when deployed. Common solutions such as constantly
retraining are costly, unwanted from a business perspective, and may introduce
inadvertent behavior in the system.

Typical real-world datasets are often collected during a significant period and
contain temporal order information (i.e., timestamps) that is most often ignored
during model construction. In this work, we proposed the Time Robust Trees, a
new decision tree induction algorithm that uses temporal order to improve the
generalization ability of predictions on unseen, future data. Our method seg-
ments data according to time and minimizes the variance of predictions across
different time segments, delivering more time-stable models. Experiments with
real-world data showing varying degrees of distributional shift suggest that Time
Robust Forests are a promising alternative for applications where it is not possi-
ble to update the model continuously. Beyond the immediate practical purpose,
the experiments show that exploiting time invariance as an inductive learning
bias is attractive for non-sequential predictive tasks.

A main limitation of the proposed method is the requirements of temporal
order (that is, a timestamp column in the dataset), a reasonable time range,
and overlapping empirical distribution support for every period regarding the
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input features. Timestamp information is most commonly available in real-world
datasets since every data is generated in time, and standard practice stores such
information. Data collected during long time periods is not uncommon since
(unlabeled), as businesses often store data continuously for significant amounts of
time. Therefore, the most severe limitation is the need for overlapping empirical
distribution support of the input features in every period. We can mitigate such
a shortcoming by considering different time scales for the time periods while
evaluating model performance and overlap. For example, consider an application
that predicts customer acquisition success rate and has customer age as one of
the input features. If the time period scale is too small, such as in days, it is very
likely that certain age ranges be present in one time period and not in others.
In the limit, each period would consist of a single example, causing the learned
model to ignore age as a relevant predictive feature. By considering increasingly
larger periods (say, of months or years), we can ensure that every data segment
contains enough examples for every age range.

The proposed method identifies time periods and environments which are
prone to problems. For example, considering two time periods as different en-
vironments while they were generated under the same environment will not de-
grade performance if data is sufficiently abundant but might do so if data is less
abundant since it will require more data to meet the cut-off level in the splits.
Instead, suppose we place two different environments in the same time period
segment. In that case, we are losing an opportunity to offer the model two cases
we want to keep relationships invariant and potentially enable the algorithm to
create splits that are good only for one of the environments in the same period.
However, we still want invariance between this period with the two environments
and other periods in the training data. While fewer segments provides a higher
volume of data in every period and enables learning more complex rules, it will
also make it more likely that two different environments share the same period,
compromising the inductive bias for invariant rules.

Real-world data with a good time range should offer enough flexibility to
enable a period segmentation to overcome the requirement of overlapping input
distribution support. For the future, we plan on exploring different automatic
segmentation strategies, representation learning schema that satisfies the over-
lapping support requirement, combining boosting while respecting the invariance
preference, and ensembles of differently regularized Time Robust Forests.
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